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Abstract 
 
PHOS is the photon spectrometer for the ALICE experiment at the Large Hadron Collider (LHC) at 
CERN. The PHOS consists of 17920 detection channels, segmented in 5 modules. For identification of 
heavy particles PHOS will use a time of flight (TOF) method. It is proposed to use the same electronics 
for measurement of particle’s energy and TOF. This paper is described the measurement electronics 
simulation aimed at estimate of the amplitude and time resolutions and their dependence on the electronics 
parameters.  
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1  Introduction 
 
The  main  task  of  PHOS  [1]  is  an identification  and  measurement  of  the  energy  of  direct  photons  
emitted  by  quark-gluon  plasma  cloud.  Expected  signal  of  the  direct  photons  is  a  small  difference  
between  two  distributions,  namely,  measured  spectrum  of  the  particles  identified  as  photons  and  
calculated  spectrum  of  photons  generated  in  decays  of  other  particles.  To  achieve  statistical  
reliability  of  results  the both  spectra  have  to  be  measured  as  precisely  as  possible.  The  process  

 gives  main  contribution  to  the  decay  spectrum,  but  γπ 20 → η -meson  decay  and  antineutron  
annihilation  are  also  significant.  For  identification  of    and  0π η -mesons  the  two  photons  invariant  
mass  method  can  be  used.  For  antineutrons  identification  the  time  of  flight  (TOF)  method  may  
appear  more  reliable.  The  distance  between  the  interaction  point  and  the  spectrometer  front  
surface  is  4.6 m,  so  one  needs  to  have  the  time  resolution  around  1 ns  for  2 GeV  particles.   
 
PHOS  measuring  channel  starts  from  PbWO4  crystal  which converts  the  incident  particle  energy  
into  photons  of  visible  light.  The  light  is  converted  into  a  voltage pulse  by  avalanche  photodiode  
(APD)  connected  to  a  charge  sensitive  preamplifier  (CSP)  input.  CSP  output  signal  comes  to  a 
shaper  that  amplifies  it  and  increases  signal/noise  ratio  due  to  its  specific  frequency  response.  The  
shaper  output  signal  is  converted  into  a  digital  code  by  fast  10-bit  ADC  that  performs  continuous  
sampling  of  its  input  voltage  with  period  Ts  (typically  100 ns).  The  codes  are stored  in  a  buffer  
memory  [2].  Useful  information  is  marked  by  a  trigger  signal. 
 
For  TOF  measurements  a  time  (fast)  channel  can  be  used,  which  includes  a  shaper  and  a  time-
to-amplitude  converter.  But  in  measurement  systems  consisting  of  several  thousands  of  channels,  
like  PHOS,  such  approach  results  in  a  considerable  increase  of  hardware  costs.  Another  approach  
consists  in  a  digital  processing  of  the  stored  sample  codes.  This  way  allows  to  determine  the  
signal  time  parameters  and,  in  particular,  to  measure  the  particle  TOF.   
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In  electron  beam  tests  performed  with  a  measuring  channel  prototype,  its  relative  energy  
resolution  has  been  found  [1]  in  the  form  of   
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Here   =  0.013 GeV,   =  0.0358a b GeV ,   =  0.0112,  energy  с E   is  in  GeV.  The 1st  term  under  
root  sign  represents  electronics  noise  contribution,  the  2nd  one – statistics  of  photoelectrons,  the  3rd  
one  is  system  constant.  At  E   =  1 GeV  the  sum  of  the  last  two  terms  is  equal  to  0.0014.  So  the  
measuring  electronics  will  not  worsen  the  PHOS  energy  resolution  if  its  relative  amplitude  
resolution  AA /σ   at  the  same  energy  is  better  than  1%. 
 
The  present  paper  summarizes  the  first  part  of  our  work  devoted  to  optimal  choice  of  PHOS  
front-end  electronics  (FEE)  parameters  and  to  elaboration  of  suitable  methods  of  data  processing.  
At  this  initial  stage  our  main  objective  was  to  resolve  a  principal  question:  is  it  possible  to  
achieve  the  time  and  amplitude  resolutions  which  can  satisfy  PHOS  physics  requirements  at  least  
at  somewhat  idealized  conditions?  If  an  answer  is  negative,  a  prospects  of  above-mentioned  work  
would  become  strongly  problematic  because  at  real  conditions  the  resolutions  will  be only worse.  
To  get  an  estimate  of  PHOS  FEE  time  and  amplitude  resolution  we  have  used  FEE  signal  
simulation  within  the  bounds  of  simplified  model. 
 
Several  versions  of  the  model  have  been  worked  out.  They  use  different  functions  for  creation  of  
the  pulse  histogram,  different  ways  of  the  pulse  parameters  determination,  and  different  sets  of  
these  parameters.  The  versions  using  program  package  MINUIT  [3]  for  search  of  model  pulse  
parameters  are  described    in  Section  2.  The  main  results  of  the  simulation  are  presented  in  
Section  3.  Section  4  contains  a  brief  discussion  of  the  results. 
 
2  Model 
 
The  computer  simulation  of  the  ADC  output  codes  consists  in  following.  It  is  specified  a  
function  which  in  some  approximation  describes  the  analog  signal  on  the  shaper  output  (model  
function).  Then  a  Gaussian  noise  with  zero  mean  and  given  sigma  is  added  to  this  function  to  
simulate  the  thermal  noise  of  the  shaper  output  signal.  ADC  performs  sampling  of  the  analog  
signal  in  time  and  digitizes  these  samples.  The  digitization  procedure  creates  additional  stochastic  
errors,  so  called  digital  noise.  The  same  rounding  off  is  performed  when  the  model  pulse  
histogram  is  created.  The abscissa  represents  time  in  the sampling  periods  (clock  bins)  and  the  
ordinate – the  signal  in  ADC  bits.  For  determination  of  the  model  pulse  parameters  the  histogram  
must  be  processed  with  some  method.  In  this  paper  the  fit  method  using  MINUIT  package  is  
described.  Multiple  repetition  of  the  foregoing  procedure  creates  a  set  of  the  model  histograms  
which  differ  only  by  noise  pattern.  The  fit  results  are  accumulated  in  the  parameters’  histograms.  
An  analysis  of  these  distributions  allows  to  estimate  the time  and  amplitude  resolutions  at  given  
conditions.   
 
2.1 Model  function 
 
The  shaper  is  a  filter  with  active  elements.  The  schematic  diagram  of  the  n - order  filter  is  
shown  in  Fig. 1  where  n  is  a  number  of  the  integration  stages.   
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Fig. 1.  The  schematic  diagram  of  the  - order  filter. n

 
 
If  RC-values  of  the  differentiating  and  integrating  circuits  are  equal  and  a  step  signal  comes  to  
the  filter  input,  then  the  filter  output  signal  is   
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where  τ/tz = ,    is  time  counted  from  the  beginning  of  the  pulse,  t RC=τ ,    is  the  filter  
order,    is  output  signal  amplitude.  Maximum  of  

N

0A )(zγ   is  achieved  at  ;  therefore,  the  
signal  rise  time  (sometimes  called  “peaking  time”)  is  equal  to  

Nz =max

τN .   
 
The  pulse  model  takes  into  account  the  following  PHOS  FEE  features: 
 

1)  in  absence  of a signal  on the shaper  input,  some  approximately  constant  voltage  level  
(pedestal  )  exists  on  its  output; P

2)  the  beginning  of  the  pulse  is  delayed  relative  to  the  beginning  of  the  histogram  by  
some  value    to  ensure  pedestal  measurements. 0Delay

 
So  the  model  function  can  be  taken  in  the  form  of   
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x   is  time  counted  from  the  beginning  of  the  histogram.  One  more  FEE  feature  is  that  the  pulse  
appearance  moment  is  known  with  accuracy  up  to  1  sampling  clock  bin  because  only  integer  
number    of  clock  bins  preceding  the  pulse  beginning  is  defined  in  the  course  of  the  
pulse  sampling,  while  the  pulse  appears  at  arbitrary  moment  of  the  next  bin.  So  an  initial  delay  
of  the  pulse  in  the  model  is  described  as 

delayBins

 
deldelayBinsDelay +=0 ,               (4) 

 
where    is  a  random  value  uniformly  distributed  from  0  to  1  clock  bin.  An  example  of  

  distribution  is  shown  in  Fig. 2.  A  typical  ADC  output  pulse  histogram  created  with  
model  function  (1) – (3)  and  Gauss  noise  with  zero  mean  and  

del
0Delay

Gaussσ  = 1 ADC  bin  is  presented  in  
Fig. 3.   
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Fig. 2.  Typical  distribution  of  initial  delay  of  the  pulse  beginning  relative  to  the  histogram  

beginning  in  the  computer  run  of  2000  model  pulses.  Sampling  frequency    =  10 
MHz  (1 clock  bin  =  100 ns),  delayBins   =  20. 

Freq

 
 
 

                 
 
Fig. 3.  The  model  pulse.  Its  parameters  are  shown  in  computer notations:  N  is  filter  order,  Tau = τ 

= RC,  Ped =   is  pedestal,  Amp =   is  amplitude.   P 0A
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2.2  Pulse  histogram  fit 
 
The  function  defined  by  equations  (1) – (3)  where  all  or  several  pulse  parameters  are  considered  
as  free  (i.e.  must  be  found  as  a  result  of  the  fit)  is  fitted  to  the  model  histogram.  In  present  
paper  three  versions  of  fitting  program  are  used.  In  the  1st  version  4  parameters  are  sought:  

,  ,  Tau ,  and  .  In  the  2Ped Amp Delay nd  one    is  given  and  fixed  during  the  fit,  in  the  3Tau rd  
one  Tau   and    are  fixed. Ped
 
Least  squares  fit  uses  MINUIT  package  [3]  implemented  in  the  form  of  ROOT  TH1::Fit  method.  
The  values  entered  into  model  function  for  pulse  histogram  creation  are  used  then  as  initial  
values  of  the  sought  parameters. 
 
In  each  computer  run  2000  model  histograms  are  created.  Each  histogram  is  fitted,  and  the  
results  are  accumulated  in the  parameters’  histograms  which,  in  turn,  are  fitted  by  Gaussian.  The  
shaper  relative  amplitude  resolution  is  defined  as 
 

AmpsigmaAmpA /=δ ,               (5) 
 
where    is  a  standard  deviation  of  the    distribution.   sigmaAmp Amp
 
The  time  resolution  of  the  shaper  is  defined  by  two  different  ways.  One  can  accept  as  a  “time  
stamp”  the  beginning  of  the  pulse  and  calculate  a  difference 
 

0DelayDelayTdiff −=                 (6) 
 
between  fitted  value    and  given  value    (4).  Then  the  shaper  time  resolution  may  be  
characterized  by    value.  In  [4]  it  has been proposed  to  use  another  “time  stamp”,  
namely  a  moment    when  the  shaper  output  signal  1

Delay 0Delay
sigmaTdiff

*x st  derivative  reaches  maximum.  It  follows  
from  (2)  and  (3)  that  τ)(* NNDelayx −+= .  A  width    of  the  histogram diffsigmaRiseT
 

     TauNNTdiffDelayxRiseTdiff *)(0* −+=−=                        (7) 
 
represents  another  definition  of  the  shaper  time  resolution.  It  is  clear  that    
coincides  with    at  N  =  1  or  in  the  case  of  fixed  Tau . 

diffsigmaRiseT
sigmaTdiff

 
A  value 

   NDFchiDisp 2=                 (8) 
 
gives  the  fit  dispersion  estimate  and  is  used  for  the  model  performance  check-up.  Here    is  
sum  of  squares  of  differences  between  the  model  histogram  points  and  fit  function  points,    
is  number  of  degrees  of  freedom,  i.e.  number  of  fitted  points  minus  number  of  sought  
parameters.  The  dependence  of  mean  value  < >  on  Gauss  noise  dispersion  is  shown  for  
example  in  Fig. 4.  If  the  model  contains  no  errors  except  for  noises,  this  result  allows  to  estimate  
digital  noise  dispersion  from  equation 

2chi
NDF

Disp

 
22
digitalGaussDisp σσ +=>< .               (9) 
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Fig. 4.  The  dependence  of  mean  fit  dispersion  NDFchiDisp 2=><   on  Gauss  noise  dispersion  
(solid  line).  The  dashed  line  shows  the  same  dependence  in  absence  of  digital  noise.   

 
 
It  follows  from  Fig. 4  that  =digitalσ 0.29  ADC  bins  (compare  with  expected  mean  value  of  
rounding-off  error  which  is  equal  to  0.5  ADC  bins). 
 
In  practice  another  fit  criterion  is  more  convenient,  namely 
 

222 /1/ GaussdigitalGaussDispRatio σσσ +== .            (10) 
 
If  the  program  works  properly,  then  at  Gaussσ   ~  1  ADC  bins  >< Ratio   must  be  close  to  1. 
 
Before  an  investigation  of  time  and  amplitude  resolution  dependencies  on  the  pulse  parameters  
one  has  to  establish  an  optimal  range  of  the  model  histogram  fitting:  at  small  number  of  the  
fitted  points  the  errors  in  parameter  determination  may  appear  too  big,  at  redundant  number  of  
the  points  the  duration  of  the  computer  runs  is  increasing  uselessly.  The  dependence  of  time  and  
amplitude  resolution  on  M   value  related  to  fit  range  width  is  presented  in  Fig. 5  and  Fig. 6.  Fit  
range  is  defined  as  follows:  its  left  edge  always  is  equal  to  zero  in  order  to  include  the  pedestal  
region,  its  right  edge  is  chosen  in  the  form  of 
 

xmax ),**(min xMaxTauNMdelayBins += ,          (11) 
 
where    =  30 xMax µ s  is  right  edge  of  the  model  pulse  histogram.  Because    is  the  pulse  
rise  time,  the  

TauN *
M   value  in  Fig. 5  and  Fig. 6  shows  how  many  of  such  intervals  are  contained  in  

the  fit  range. 
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Fig. 5.  The  dependence  of  time  resolutions  sigmaTdiff   and    on  fit  range  width  for  
1

diffsigmaRiseT
st  order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  10 MHz,    =  500 ns,  

  =  500 ADC  bins,  
Freq TauN *

0Amp Gaussσ =  0.6 ADC  bins.  
 
 

 
 

Fig. 6.  The  dependence  of  relative  amplitude  resolution    on  fit  range  width  for  
1

AmpsigmaAmp /
st  order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  10 MHz,    =  500 ns,  

  =  500 ADC  bins,  
Freq TauN *

0Amp Gaussσ =  0.6 ADC  bins.   
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It  is  seen  that  the  time  resolution  is  almost  constant  at  M  ≥  10  independently  of  fit  method.  
The  amplitude  resolution  at  fixed    continues  to  improve  with  increase  of  Tau M   up  to  50,  but  
this  improvement  is  limited  by  value  ~ 0.01% .  In  what  follows  the    value  from  (11)  at  xmax M   
=  15  is  accepted  as  an  optimal  fit  range  value. 
 
 
3  Main  results 
 
The  dependencies  of  time  and  relative  amplitude  resolution  on  the  pulse  rise  time  ,  ADC  
sampling  frequency  ,  pulse  amplitude  ,  and  Gauss  noise  sigma  

TauN *
Freq Amp Gaussσ   are  presented  in  

Fig. 7...14.  The  shapers  with  1st  order  and  2nd  order  filters  were  investigated.  Each  shaper  time  
and  amplitude  resolution  are  obtained  by  three  different  fits  of  the  model  histogram  (see  Section  
2.2). 
 
 
4  Discussion 
 
4.1  Time  resolution 
 
In  the  parameters’  region  that  we  have  studied,    and    are  
approximately  proportional  to   

sigmaTdiff diffsigmaRiseT
TauN *   and  Gaussσ ,  and  they  are  approximately  inversely  

proportional  to    and  Amp Freq .  This  result  does  not  depend  on  the  model  pulse  histogram  
fitting  method. 
 
If  all  4  pulse  parameters  ( ,  ,  Tau   and  )  are  considered  as  free,  and  the  time  
resolution  is  defined  by    value,  then  the  1

Ped Amp Delay
diffsigmaRiseT st  order  filter  and  the  2nd  order  filter  

time  resolutions  are  equal  at  equal  rise  time  values    and  at  the  same  other  conditions.  
This  resolution  is  improved  by  approximately  30%  at  fixed  Tau .  If  Tau   has  been  fixed,  then  
additional  fixing  of  the  pedestal    does  not  change  the  time  resolution,  but  slightly  decrease  
the  program  run  time. 

TauN *

Ped

 
It  is  worthy  of  notice  that  the  pulse  histogram  fit  at  4  free  parameters  of  the  2nd  order  filter    
gives    value  notably  less  than    .  Though  as  can  be  seen  from  (7) 

  contains  another  fitted  parameter  Tau  in  addition  to  Tdiff .  A  possible  explanation  of  
this  result  is  Tdiff   and  Tau   are  partly  correlated  (see  Fig. 15).   

diffsigmaRiseT sigmaTdiff
RiseTdiff

 
4.2  Amplitude  resolution 
 
In  the  investigated  area  of  the  parameters,  the  relative  amplitude  resolution    is  
approximately  proportional  to  

AmpsigmaAmp /

Gaussσ   and  is  approximately  inversely  proportional  to  TauN * ,  

,  and  Amp Freq .  As  in  the  case  of  the  time  resolution,  this  result  is  independent  of  the  model  
pulse  histogram  fitting  method.  In  contrast  to  the  time  resolution,  the  amplitude  resolution  is  
notably  improved  when  number  of  fixed  parameters  increases.  At the  same  fitting  method,  the 
amplitude  resolution  of  the  1st  order  filter  is  about  20%  better  than  one  of  the  2nd  order  filter  . 
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Fig. 7.  The  dependence  of  time  resolutions    and    on  sigmaTdiff diffsigmaRiseT TauN *   for  1st  
order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  10 MHz,    =  500 ADC  bins,  Freq 0Amp

Gaussσ =  0.6 ADC  bins. 
 
 

 
Fig. 8.  The  dependence  of  relative  amplitude  resolution    on  AmpsigmaAmp / )*/(1000 TauN   for  

1st  order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  10 MHz,    =  500 ADC  
bins,  

Freq 0Amp

Gaussσ =  0.6 ADC  bins. 

 9



 

 
 

Fig. 9.  The  dependence  of  time  resolutions    and    on  sigmaTdiff diffsigmaRiseT Freq/1   for  1st  
order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  500 ns,    =  500 ADC  bins,  TauN * 0Amp

Gaussσ =  0.6 ADC  bins. 
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Fig. 10.  The  dependence  of  relative  amplitude  resolution    on  AmpsigmaAmp / Freq/1   for  1st  
order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  500 ns,    =  500 ADC  bins,  TauN * 0Amp

Gaussσ =  0.6 ADC  bins. 

 
 

Fig. 11.  The  dependence  of  time  resolutions    and    on    for  
1

sigmaTdiff diffsigmaRiseT 0/1000 Amp
st  order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  10 MHz,  ,    =  500 ns ,  Freq TauN *

Gaussσ =  0.6 ADC  bins. 
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Fig. 12.  The  dependence  of  relative  amplitude  resolution    on    for  1AmpsigmaAmp / 0/1000 Amp st  
order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  10 MHz,    =  500 ns,  Freq TauN *

Gaussσ =  0.6 ADC  bins. 

 
 

Fig. 13.  The  dependence  of  time  resolutions  sigmaTdiff   and    on  Gauss  noise  
sigma  

diffsigmaRiseT

Gaussσ   for  1st  order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  10 MHz,  
  =  500 ns ,    =  500 ADC  bins. 

Freq
TauN * 0Amp
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Fig. 14.  The  dependence  of  relative  amplitude  resolution    on  Gauss  noise  sigma  AmpsigmaAmp /

Gaussσ   for  1st  order  (N  =  1)  and  2nd  order  (N  =  2)  filters.    =  10 MHz,    =  
500 ns,    =  500 ADC  bins.   

Freq TauN *
0Amp

 

 
 
Fig. 15.  The  Tdiff   vs  Tau   distribution.  The  both  values  are  in  nanoseconds. 
 
 
4.3  Empiric  formulae 
 
All  dependencies  shown  in  Fig. 7 … Fig. 14  were  fitted  by  simple  functions  of  the  investigated  
parameters.  Based  on  the  functions  that  have  been  obtained  in  the  model  with  fixed  Tau   and  

,  two  empiric  formulae  are  derived.  They  allow  to  estimate  the  shaper  time  resolution  
( )  and the amplitude  resolution  ( )  at  given  the  sampling  frequency  , the 
time  constant  Tau ,  the  pulse  amplitude  ,  and  Gauss  noise  sigma  

Ped
sigmaTdiff sigmaAmp Freq

Amp Gaussσ   without  use  of  
relatively  slowly  working  simulation  program.  An  inaccuracy  of  the  empiric  formulae  in  the  
investigated  parameter  range  does  not  exceed  value  of  a  few  percents.  The  calculations  are  
performed  by  small  program  sigmaProbe_1.cxx  presented  in  Attachment. 
 
 
5  Conclusions 
 
The  dependence  of  PHOS  FEE  channel  time  and  amplitude  resolutions  on  the  pulse  parameters  
and  ADC  sampling  frequency  has  been  studied  using  an  idealized  shaper  model  with  the  1st  and  
2nd  order filters.  The  program  package  MINUIT  with  three  different  sets  of  sought  parameters  has  
been  used  for  the  model  pulse  fitting.  The  best  results  have  been  obtained  at  Tau   and    
fixed  simultaneously.  In  this  case  the  1

Ped
st  and  2nd  order  filter  time  resolutions  are  the  same  at  
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equal  pulse  rise  time    and  at  the  same  other  conditions,  and  the  1TauN * st  order  filter  amplitude  
resolution  is  about  20%  better  than  the  2nd  order  filter  one. 
 
The  time  and  amplitude  resolutions  improve  with  decrease  of  thermal  noise  level  and  with  
increase  of  the  pulse  amplitude  and  signal  sampling  frequency,  but  depend  in  different  ways  on  
filter  time  constant  Tau .  Choice  of  Tau   depends  on  specific  goal:  to  improve  time  resolution  
one  has  to  reduce  Tau ,  while  to  improve  amplitude  resolution  (for  example,  at  small  pulse  
amplitudes)  one  has  to  increase  it.  The  optimal  shaper  design  for  PHOS  is the 1st  order  filter  with  
time  constant  Tau   (peaking  time)  in  the  range  of  0.5 – 1 µs.  At  sampling  frequency  10  MHz  one  
may  use  30 – 60  samples  to  fit  the  pulse  histogram.  Then  it  is  seen  from  the  plots  in  Fig. 5, 6  
that  the  time  resolution  is equal  to  0.24 ns  and  the  amplitude  resolution  is  equal  to  0.045%  at  
energy  2.5 GeV  that  satisfied  the  PHOS  requirements.  
 
The  described  results  give  positive  answer  to  the  principal  question  formulated  in  Introduction.  
But  it  does  not  mean  that  FEE  resolutions  will  be  so  excellent  at  real  conditions.  Moreover,  the  
method  used  in  this  work  for  processing  of  the  model  pulse  cannot  be  used  in  real  
measurements:  1)  precise  MINUIT  fit  is  too  slow  for  on-line  data  processing;  2)  even  if  the  
samples  will  be  available  off-line,  a  real  pulse  shape  could  significantly  and  in  non-predictable  
way  differ  from  ideal  one.  It  is  evident  that  we  need  to  invent  another  method  which  must  be  
fast  enough,  less  sensitive  to  the  pulse  shape,  and  at  the  same  time  must  ensure  fulfillment  of  
PHOS  resolution  requirements.  A  new  approach  with  good  prospects  have  been  proposed  last  year  
by  one  of  the  authors.  We  are  working  now  on  some  details  of  this  so  called  “K-level”  method  
[5].  Nevertheless,  we  believe  that  presented  results  may  be  useful  for  an  optimal  FEE  design  and  
as  a  “reference  point”  for  comparison  with  results  of  future  data  processing  developments. 
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Attachment 
 
// sigmaProbe_1.cxx 
 
// CALCULATE sigmaAmp AND sigmaTdiff FOR GIVEN SET OF PARAMETERS 
// Tau AND Ped ARE FIXED 
 
double sigmaAmp, sigmaTdiff; 
 
void probe(int N, double Freq, double Tau, double Amp, double Sigma){ 
 
// N         = order of filter 
// Freq    = ADC frequency (in MHz) 
// Tau     = filter RC (in ns) 
// Amp    = pulse amplitude (in ADC bins) 
// Sigma = sigma of Gauss noise (in ADC bins) 
// pedestal Ped may be any 
 
    if(N!=1 && N!=2){ 
 cout << "\nN must be 1 or 2!\n\n"; return; 
    } 
 
    if(N==1){ 
 
 double sigmaAmp0_1 = 0.22126; 
 
 double aFreq_1  = (-0.01808 + 0.74103/TMath::Sqrt(Freq))/sigmaAmp0_1; 
 double aTau_1   = (-0.00094 + 0.15657*TMath::Sqrt(1000/(N*Tau)))/sigmaAmp0_1; 
 double aAmp_1   =   0.22090/sigmaAmp0_1; 
 double aSigma_1 =  (0.06151 + 0.26581*Sigma)/sigmaAmp0_1; 
 
 double sigmaTdiff0_1 = 0.22852; 
 
 double tFreq_1  = (-0.02022 + 0.78469/TMath::Sqrt(Freq))/sigmaTdiff0_1;  
 double tTau_1   =  (0.03311 + 0.008863*TMath::Sqrt(N*Tau))/sigmaTdiff0_1; 
 double tAmp_1   =  (0.01179 + 107.12/Amp)/sigmaTdiff0_1; 
 double tSigma_1 =  (0.04788 + 0.29771*Sigma)/sigmaTdiff0_1; 
 
 sigmaAmp   = sigmaAmp0_1 * aFreq_1 * aTau_1 * aAmp_1 * aSigma_1; 
 sigmaTdiff = sigmaTdiff0_1 * tFreq_1 * tTau_1 * tAmp_1 * tSigma_1; 
    } 
 
    if(N==2){ 
 
 double sigmaAmp0_2 = 0.26261; 
 
 double aFreq_2  = (-0.00224 + 0.83552/TMath::Sqrt(Freq))/sigmaAmp0_2; 
 double aTau_2   = (-0.00706 + 0.19062*TMath::Sqrt(1000/(N*Tau)))/sigmaAmp0_2; 
 double aAmp_2   =   0.26138/sigmaAmp0_2; 
 double aSigma_2 =  (0.05482 + 0.35430*Sigma)/sigmaAmp0_2; 
 
 double sigmaTdiff0_2 = 0.23053; 
 
 double tFreq_2  = (-0.00869 + 0.74515/TMath::Sqrt(Freq))/sigmaTdiff0_2; 
 double tTau_2   =  (0.03106 + 0.009070*TMath::Sqrt(N*Tau))/sigmaTdiff0_2; 

http://cmsdoc.cern.ch/~akuryaki/2005/ALTRO/
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 double tAmp_2   =  (0.00764 + 110.66/Amp)/sigmaTdiff0_2; 
 double tSigma_2 =  (0.04617 + 0.30564*Sigma)/sigmaTdiff0_2; 
 
 sigmaAmp   = sigmaAmp0_2   * aFreq_2 * aTau_2 * aAmp_2 * aSigma_2; 
 sigmaTdiff = sigmaTdiff0_2 * tFreq_2 * tTau_2 * tAmp_2 * tSigma_2; 
    } 
    cout << "\nsigmaAmp   = " << sigmaAmp; 
    cout << "\nsigmaTdiff = " << sigmaTdiff << "\n\n"; 
} 
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