RCU Firmware V2.1

User Manual

Started: 15th April 2010 Last Update: 13th August 2010 DRAFT 0.1

Index of Contents

RC	U Firmware V2.1	1
Us	er Manual	1
0.1	Index of Contents	2
0.2	List of Tables	3
0.3	List of Figures	4
0.4	Updates (w.r.t) RCU_FW v2.0	5
Ch	apter 1	6
1.1	Functionality	6
1.2	RCU/FEC Instruction Format	8
1.3	Register Table	9
1.4	RCU Memories and Address space	26
1.5	Instruction Sequencer Commands	27
1.6	front End Card Instructions	32
1.7	RCU Commands	39
Ch	apter 2	50
2.1 Co	mmon Data Header (CDH)	51
2.2 Pa	y Load (ALTRO Read out Data)	54
2.3 RC	CU Trailer	55
Арр	endix	66

List of Tables

1.1	IS Instruction Format	7
1.2	IS Internal Instruction Codes	7
1.3	IS Internal Instruction format	7
1.4	Configuration Registers of RCU	8
1.5	Status & Error Registers of RCU	_20
1.6	Trigger Interface module Register set	_22
1.7	Addressable Memories of RCU	_23
1.8	Structure of LOOP Instruction	_25
1.9	Content of Result Memory for Successful Loop Execution	_25
1.10	Content of Result Memory for Failed Loop Execution	_25
1.11	Structure of WAIT Instruction	_26
1.12	Content of Result Memory for WAIT Execution	_26
1.13	Structure of ENDSEQ Instruction	_27
1.14	Content of Result Memory for ENDSEQ Execution	_27
1.15	Structure of ENDMEM Instruction	_28
1.16	Content of Result Memory for ENDMEM Execution	_28
1.17	Structure of FEC_RD Instruction	_28
1.18	Content of Result Memory for Successful FEC_RD Execution	_31
1.19	Content of Result Memory for Failed FEC_RD Execution Execution	31
1.20	Description of AIM error code in result memory for FEC RD	31
1.21	Description of Inst. Analyzer error code in result memory FEC_RD	31
1.22	Structure of FEC_WR Instruction	_32
1.23	Content of Result Memory for Successful FEC_WR Execution	_33
1.24	Content of Result Memory for Failed FEC_WR Execution Execution	_33
1.25	Description of AIM error code in result memory for FEC_WR	_33
1.26	Description of Inst. Analyzer error code in result memory FEC_WR	_33
1.27	Structure of FEC_CMD Instruction	34
1.28	Content of Result Memory for Successful FEC_CMD Execution	35
1.29	Content of Result Memory for Failed FEC_CMD Execution Execution	35
1.30	RCU Commands	_36
1.31	Structure of Event data block	_46
2.1	Common Data Header (CDH)	_47
2.2	Error & Status Bit in CDH 4[27:12]	_49
2.3	Order of 10 bit words in 32 bit data packet	_50
2.4	RCU Trailer	_51

List of Figures

1.1	Block Diagram of Top Level Module of the RCU Firmwar	re6
1.2	FEC Read Chronogram	30
1.3	FEC Write Chronogram	32
1.4	CONFGFEC - Chronogram	40
1.5	Software Triger Chronogram	43

Updates w.r.t Version 2.0

1) Readout List Memory (ROLM)

Read out list memory is split into two separate memories, one is specified for each branch A and B. Size of each memory is 12 * 2048.

Address space allocated to the ROLM – A is 0x1000 – 0x17FF Address space allocated to the ROLM – A is 0x1800 – 0x1FFF

2) Hit List Memory (HLM)

Hit list memory is split into two separate memories, one is specified for each branch A and B. Size of each memory is 32 * 64 (four consecutive locations specified for each FEC).

Address space allocated to the HLM - A is 0x 5000 - 0x 503F

Address space allocated to the HLM - B is 0x 5040 - 0x 507F

3) SCEVL Delay

Time to perform the scan event length command is configurable. This is the time taken by the board controller to read the content of ADEVL register from ALTROS. This register is set to a default value of 90 usec: = 0xE10 for TPC.

Address of this register is 0x510A and its 13 bit wide.

4) Configurable Frequency of Slow Control Clock

Slow control clock is provided from RCU to the FECs , the frequency of this clock is configurable.

Address of this register is 0x800C and its 2 bit wide.

Top Level Unit

1.1 functionality

The data/configuration transfer between the RCU and front-end cards is performed with the ALTRO protocol as described in the ALTRO Chip User's Manual. From the User's point of view the ALTROs are not directly accessible from the RCU. The link is made through a □controller-like procedure that will execute sequentially a set of pre-loaded instructions. In this way the user can send large portions of front-end configuration in an instruction memory in the RCU and execute the sequence with a single command. These sequences can be composed with ALTRO instructions and RCU-specific instructions.

This manual contains full information on all accessible memories and registers along with the executable commands.

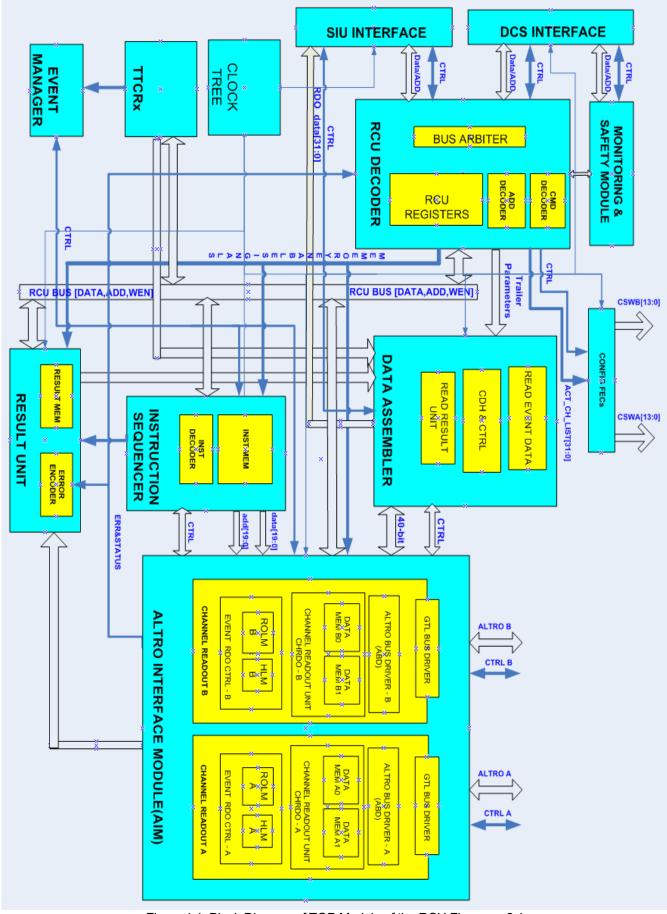


Figure 1.1: Block Diagram of TOP Module of the RCU Firmware 2.1

1.2 RCU/FEC Instruction Format

An important difference between v1 and v2 of the RCU firmware regards the Instruction Sequencer (IS). In the new version the IS can execute ALTRO Instructions but not RCU Instructions. In addition the IS recognizes a set of 4 internal instructions that can be used to condition the execution of the ALTRO instructions. The Instruction Memory (IM) of the IS has in RCU v2 a depth of 4096 x 22-bit wide words. The format of the Instructions for the IS is illustrated in tables 1.1, 1.2 and 1.3.

21 IS/FEC 20	19INSTRUCTION PARAMETERS0		
00, FEC_RD	ALTRO Instruction		
01, FEC_CMD	FEC_CMD ALTRO Instruction		
10, FEC_WR (*)	ALTRO Instruction (Address)		
10, FEC_WR()	ALTRO Instruction (Data)		
11, IS_CMD	IS Internal Code (4 bits) IS Internal Code parameter (1 bits)		

Table 1.1 IS Instruction Format

Name	Access	Inst. Code	Description
LOOP	W	0x1	Execute the instructions in loop for defined number of times
WAIT	W	0x2	Wait for defined number of clock cycles
ENDSEQ	W	0x8	End of specific sequence (set of instructions)
ENDMEM	W	0xF	End of Instruction Memory

Table 1.2. IS internal instructions codes.

IS/FEC	IS CMD		CMD PARAMETER
11	Wait		Number of wait cycles
11	Loop	No of loops [15:12]	Loop return address[11:0]
11	ENDSEQ	Х	
11	ENDMEM	Х	

Table 1.3. IS internal instruction format.

1.3 Configuration Registers

The register Table 1.4, incorporates various registers that are used for configuration of the RCU. Table 1.5 and table 1.6 describes the status and error register which can be read externally for RCU and trigger module respectively.

Name	Addres s	Width	Access	Description
ACTFECLIST	0x5100	32	W/R	Active FEC List
ALTROIF	0x5101	18	W/R	Nr. Samples / channel \equiv [9:0]; T _{sampling} / T _{LHC} \equiv [13:10]; CSTB programmable delay \equiv [15:14] ; Instruction error check selection [17:16]
TRGCONF	0x5102	17	W/R	Trigger Source ≡ [16:14], Trigger Mode ≡ [13], L2 latency wrt L1 ≡ [12:0].
RDOMOD	0x 5103	4	W/R	[3] Mask RDYRX ;Sparse readout enable ≡ [2]; execute sequencer on SOE/EOE ≡ [1] ; MEB mode [0].
ALTROCFG1	0x5104	20	W/R	Copy of the ALTROCFG1 register of the ALTRO chip (see ALTRO manual pags. 36-37). The content of this register will be copied in one of the words of the event data block trailer.
ALTROCFG2	0x5105	25	W/R	Copy of the ALTROCFG2 register of the ALTRO chip (see ALTRO manual pags. 36-37). The content of this register will be copied in one of the words of the event data block trailer.
RCU_VERSION	0x5106	24	R	RCU version (ASCII coding of version number).
BP_VERSION	0x5107	1	W/R	Mapping of ACTFECLIST to cardswitch lines. 0 for TPC and FMD, 1 for PHOS.
RCUID	0x5108	9	W/R	RCU ID Register
SCEVL_DLY	0x510A	13	W/R	Time to perform SCEVL command
SCLK_FREQ	0x800C	2	W/R	Frequency of the slow control clock is configured in this register.

Table 1.4 Configuration Registers of RCU

Active Front End Card List [31:0]

Address	0x5100
Access Type	R/W
Bit Width	31

Description:

Front end cards are set turned on and off by configuring this register.

FEC – Branch A [15:0]

FEC – Branch B [31:16]

ALTRO Interface Register [17:0]

Address	0x5101
Access Type	R/W
Bit Width	18

Description:

Instruction error check selection = [17:16]

"00":= Contents of Instruction memory are not Checked

"01":= Contents of Instruction memory will be checked against TPC instruction set.

"10":= Contents of Instruction Memory will be checked against PHOS instruction set.

"11":= Contents of Instruction Memory will be checked against FMD instruction set

CSTB programmable delay ≡ [15:14]

This is the delay between the assertion of "cstb" and altro bus to avoid any possibility of glitch on hand shake

signals due to 40 bit ALTRO bus driving.

Sampling Clock Dividing Ratio: T sampling / TLHC = [13:10]

"00":= divide by 2; Period of sampling clock = 50nsec

"01":= divide by 4; Period of sampling clock = 100nsec

"10":= divide by 8; Period of sampling clock = 200nsec

"11":= divide by 16; Period of sampling clock = 400nsec

Nr. Samples / channel \equiv [9:0]

Trigger Configuration Register [16:0]

Address	0x5102
Access Type	R/W
Bit Width	17

Description:

Trigger Source [16:14]

- i) "100" = CTP Triger Enabled
- ii) "110" = L1 pulse is used as Trigger input. Serial B input is ignored.
- iii) "001" ≡ Software Trigger Enable (0x5306)
- iv) "010" = Auxiliary Trigger Enable. This trigger pulse is directly injected to RCU.

Trigger Mode [13]

'0' \equiv Trigger mode is TPC {L1 from CTP is mapped to L1 to FEC} '1' \equiv Trigger mode is PHOS {L0 from CTP is delivered as L1 to FEC}

L1 – L2 Latency [12:0]

For trigger sources (ii, iii and iv) the latency between L1 and L2 is set here.

Readout Mode Configuration Register [3:0]

Address	0x5103
Access Type	R/W
Bit Width	5+2(Debug mode)

Description:

Skip Empty Channel [6]

[6] = "1" = RCU will skip the empty channel while performing "Full Readout"

[5] = "0" = RCU will not skip the empty channel while performing "Full Readout"

Mask Check of [Channel Address / Block Length] Mismatch [5][4]

[5] = "1" ≡ check of Channel address mismatch will be masked (not checked)
[5]= "0" ≡ check of Channel address mismatch will not be masked (checked)
[4] = "1" ≡ check of Block Length mismatch will be masked (not checked)
[4]= "0" ≡ check of Block Length mismatch will not be masked (checked)

Mask Read to Receive "RDYEX" [3]

- "1" = Ready to receive command is masked, means even if the ready to receive command is not given from DDL still data will be delivered from RCU to SIU. {Used for debugging purposes}
- "0" ≡ Ready to receive command (open link) must be given before data is to be received.

Sparse Readout Mode [2]

- '0' = Read out mode is <u>"full readout"</u> according to readout list memory.
- '1' ≡ Read out mode is <u>"sparse readout"</u> according to readout list memory.

SOE/EOE Instruction Memory Execution [1]

- '0' = Sequence in the instruction memory will not be executed on SOE/EOE.
- '1' ≡ Sequence in the instruction memory will be executed on SOE/EOE and result from result memory will be sent as payload.

MEB (multi event buffer) Mode [0]

- $0' \equiv$ Multi event buffer mode is set to 4
- '1' \equiv Multi event buffer mode is set to 8

ALTRO Configuration Register 1 [19:0]

Address	0x5104
Access Type	R/W
Bit Width	20

Description:

This register is copy of ALTRO configuration register. Parameters in this register are used to record in the RCU trailer word. Refer to ALTRO manual pages 36, 37.

First Baseline Correction Mode \equiv RDCCFG1 [3:0] Polarity. When set, the ADC data is inverted (1's C) [4] Nr. Of pre-samples excluded from 2nd baseline corr. \equiv RDO_CFG1 [6:5] Nr. Of post-samples excluded from 2nd baseline corr. \equiv RDO_CFG1 [10:7] Enable second baseline correction \equiv RDO_CFG1 [11] Glitch filter configuration for zero suppression \equiv RDO_CFG1 [13:12] Nr. Of post-samples excluded from suppression \equiv RDO_CFG1[16:14] Nr. Of pre-samples excluded from suppression \equiv RDO_CFG1[18:17] Enable Zero Suppression \equiv RDOCFG1 [19]

Altro Configuration Register 2 [24:0]

Address	0x5105
Access Type	R/W
Bit Width	25

Description:

Nr of ALTRO Buffers (copy of RCU register ALTROCFG2[4]) = RDO_CFG2[24]

Nr of pre-trigger samples (copy of RCU register ALTROCFG2[[3:0]) = RDO_CFG2[23:20]

Nr. Samples / channel (copy of RCU register ALTROIF[9:0]) = RDO_CFG2[19:10]

Sparse Readout = RDO_CFG2[9]

Tsampling / TLHC = RDO_CFG2[8:5]

Phase of L1 trigger w.r.t. LHC bunch crossing = RDO_CFG2 [4:0].

The phase is calculated in terms of bunch crossing cycles for example if the T sampling/TLHC is equal 01 (10MHz sampling rate), only the two least significant bits are meaningful and the phase can take values 0, 1, 2, 3.

RCU Version Register [23:0]

Address	0x5106
Access Type	R
Bit Width	24

Description:

This register describes the RCU version along with the revision, format is "MM-YY-AE-VERSION" read as X"07-08-AE-20"

Month Year: = 0708 Version: = 2.0 Identification: = AE

Back Plane Version Register [0]

Address	0x5107
Access Type	R
Bit Width	1

Description:

This register set the mapping structure of ACTFECLIST to card switch lines.

'0':= TPC and FMD.

'1':= PHOS.

RCU Identification Register [8:0]

Address	0x5108
Access Type	R/W
Bit Width	9

Description:

This register identifies the physical location of RCU.

RCUID [8] = 0 for A-side, 1 for C-side RCUID [7:3] = sector number (0:17) RCUID [2:0] = readout partition number (0:5)

Scan Event Length Command Delay [8:0]

Address	0x510A
Access Type	R/W
Bit Width	13

Description:

SCEVL command is given in broadcast mode to all FECs while performing the sparse readout. This register is used to configure the delay for scan event length command to the board controller. This time is taken by the every board controller to transfer the contents of the event length register from ALTRO and build the event length register in board controller for 128 channels. Default value of this register is set to "0xE10":= (3600*25nsec= 90usec) for TPC.

Frequency of the Slow control clock [1:0]

Address	0x800C
Access Type	R/W
Bit Width	2

Description:

Slow control clock is provided to board controller to perform the readout of monitoring parameters. The frequency of this clock is configurable as described below:

Value	Frequency(MHz)
0x0	5.0
0x1	2.5
0x2	1.25
0x3	0.625

Name	Address	Width	Access	Description
FECERRA	0x 5110	20	R	Error code , transactions on branch A
	0.5110	20		[0] Altro Error is asserted.
				FSM_WR
				[1] Altro assert error before "cstb" assert [2] "ack" assert before "cstb"
				[3] Altro assert error during 'waitack'
				[4] "ack" not asserted & time out
				[5] Altro error asserted during 'waitdone'
				[6] "ack" not released by Altro
				[7] Altro Assert the error while waiting for broad cast
				command FSM_RD
				[8] Altro error is asserted during 'assertbus'
				[9] Altro error is asserted while waiting for "ack"
				"chlack"
				[10] Altro assert "ack" before "cstb" assert
				[11] Altro error is asserted while waiting for "ack"
				[12] Altro does not assert ack
				[13] Altro error is asserted while waiting for release of "ack"
				[14] "ack" never released by Altro
				FSM_RDO
				[15] Fsm wr error when started by FSM RDO
				[16] Altro error asserted before transfer asserted.
				[17] Transfer not asserted
				[18] Altro error asserted while data being transferred [19] Transfer not released
				Error code , transactions on branch A
FECERRB	0x 5111	20	R	[0] Altro Error is asserted.
				FSM_WR
				[1] Altro assert error before "cstb" assert
				[2] "ack" assert before "cstb"
				[3] Altro assert error during 'waitack' [4] "ack" not asserted & time out
				[5] Altro error asserted during 'waitdone'
				[6] "ack" not released by Altro
				[7] Altro Assert the error while waiting for broad cast
				command
				FSM_RD
				[8] Altro error is asserted during 'assertbus'
				[9] Altro error is asserted while waiting for "ack" "chlack"
				[10] Altro assert "ack" before "cstb" assert
				[11] Altro error is asserted while waiting for "ack"
				[12] Altro does not assert ack
				[13] Altro error is asserted while waiting for release
				of "ack" [14] "ack" never released by Altro
				FSM_RDO
				[15] Fsm wr error when started by FSM RDO
				[16] Altro error asserted before transfer asserted.
				[17] Transfer not asserted
				[18] Altro error asserted while data being transferred

				[10] Transfer not released
				[19] Transfer not released Errors related to Event Read out
RDOERR	0x5112	9	R	Errors related to Event Read out [0]Error occur during send command
				[1]Atlro error when wait trsf assert
				[2]Trsf not assert
				[3]Altro not give four dstb data
				[4]Trsf not release
				[5]Error occur during send scan event length
				command
				[6] RD_RX not asserted or de-asserted during event
				readout
				[7] Channel Address mismatch
				[8] Data Block Length mismatch
				Debug
				[31:28] FSMWR_ST_B
				[27:24] FSMWR_ST_A
				[23:20] FSMEVLEN_ST
				ALTRO bus status refreshed every clock cycle:
ALTBUSST	0x5114	8	R	[0] CSTB, branch A
ATUS				[1] ACK, branch A
				[2] TRSF, branch A
				[3] CSTB, branch B
				[4] ACK, branch B
				[5] TRSF, branch B
				[6] L1 of ALTRO
				[7] L2 of ALTRO
ALTBSST_	0x5115	8	R	ALTRO bus status(when TRSF_A or TRSF_B is
TRSF				asserted):
				[0] CSTB, branch A
				[1] ACK, branch A
				[2] TRSF, branch A
				[3] CSTB, branch B
				[4] ACK, branch B
				[5] TRSF, branch B
				[6] L1 of ALTRO [7] L2 of ALTRO
				RCU bus is busy(running instruction sequencer)
BUSBSY	0x5116	2	R	[0] instruction sequencer busy
				[1] Last instruction sequence completed with errors
MEBST	0x511B	4	R	[3:0] MEB status counter
CNT				
				[7:4] DATA_READY
				[9:8] DM_SEL :- it shows which of memory
				block(out of A0,A1,B0,B1) is being read by the data
				assembler.
SWTTRGC	0x511C	20	R	Software Trigger counter
NT	-			
AUXTRGC	0x511D	20	D	Auxiliary Triagor counter
NT	UILCXO	20	R	Auxiliary Trigger counter
TTCL2_AC	0x511E	20	R	TTC L2 Accept Counter
NT				
		20	Р	TTC 1 2 Point Counter
TTCL2_RC	0x511F	20	R	TTC L2 Reject Counter
NT				
DSTB_A	0x5120	20	R	Branch A DSTB Assert Counter
CNT				
	0.004	20	п	Propeh P DSTP Accent Counter
DSTB_B CNT	0x5121	20	R	Branch B DSTB Assert Counter
			1	

			1	
TRSFA CNT	0x5122	12	R	Branch A TRSF Assert Counter
TRSFB CNT	0x5123	12	R	Branch B TRSF Assert Counter
ACKA CNT	0x5124	12	R	Branch A ACK Assert Counter
ACKB CNT	0x5125	12	R	Branch B ACK Assert Counter
CSTBA CNT	0x5126	12	R	Branch A CSTB Assert Counter
CSTBB CNT	0x5127	12	R	Branch B CSTB Assert Counter
DSTB_NUM A	0x5128	9	R	Block length of last data written from Branch A
DSTB_NUM B	0x5129	9	R	Block length of last data written from Branch B
ADD_MM_C NT	0x512A	12	R	Number of address mismatches between ALTRO trailer and addressed channel from ROLM.
BLTH_MM_ CNT	0x512B	12	R	Number of block length mismatches between ALTRO trailer word and the (data strobe counter – 1)
ABDFSMPR _ST	0x512C	22	R	ABD state machines status [21:19] FSM_RDO status of branch B [18:15] FSM_RD status of branch B [14:11] FSM_WR status of branch B [10:8] FSM_RDO status of branch A [7:4] FSM_RD status of branch A [3:0] FSM_WR status of branch A
RDOFSMPR _ST	0x512D	15	R	Readout state machines status[14:12]SCEVLEN_FSM status[11:8]EVLEN_FSM status[7:4]FSM_EVRDO_CTRL status[3:2]FSM_SEL_BR status of branch B[1:0]FSM_SEL_BR status of branch A
INSSEQ PR_ST	0x512E	15	R	Execute instruction sequencer state machines status [14:10] FSM_INSTSEQ status [9:5] FSM_INSTLOOP status [4:0] FSM_RU status
EVMNGPR_ ST	0x512F	12	R	Event manager state machines status [11:10] FSM_TST_TRG status [9:6] FSM_TTC_TRG status [5:3] FSM_EV status [2:0] FSM_INSSEQ status
DA_FSM	0x5130		R	[29:25] fsmrdrm_st , [24:20] fsmrdpar_st , [19:15] fsmrddm_st , [14:10] fsmrdcdhsoft_st , [9:5] fsmrdcdh_st , [0:4] fsmdamain_st
RDO_TIME*	0x5132	32	R	Time taken by last event readout (L2 EOEV) [RDO_TIME*25= TIME IN nsec)

Table 1.5 Status & Error Registers of RCU

Name	Address	Access	Description
Control[23:0]	0x 4000	RW	 [0] Serial B channel on/off Default: 1 [1] Disable_error_masking 0 [2] Enable Rol decoding 0 [3] L0 support 1 [4:7] (Not Used) [8] L2a FIFO storage mask 1 [9] L2r FIFO storage mask 1 [10] L2 Timeout FIFO storage mask 1 [11] L1a message mask 1 [12] Trigger Input Mask Enable 0 [13:15] (Not Used) [16] Bunch_counter overflow - [17] Run Active - [18] Busy (receiving sequence) - [19] Not Used [23:20] CDH version 0x2 [31:24] Trigger Receiver Version 0x13
Module Reset	0x4001	Т	Reset Module
Rol_Config1[17:0]	0x4002	RW	Definition of what region of interest the RCU is a part of (depends on the sector). Bit 17:0
Rol_Config2[17:0]	0x4003	RW	Definition of what region of interest the RCU is a part of (depends on the sector). Bit 35:18
Reset Counters	0x4004	Т	Write to this registers will reset the counters in the module
Issue Testmode	0x4005	т	Debug: Issues testmode sequence. Note that serialB channel input MUST be disabled when using this feature.
L1_Latency[15:0]	0x4006	RW	[15:12] Uncertainty region +- N. default value 0x2 (50 ns) [11:0] Latency from L0 to L1, default value 0x0D4 (5.3 us)
L2_Latency[31:0]	0x4007	RW	[15:0] Max Latency from BC0 to L2, default value 0x4E20 (500 us) [31:16] Min Latency from BC0 to L2, default value 0x0C80 (80 us)
Rol_Latency[31:0]	0x4009	RW	[15:0] Max Latency from BC0 to Rol msg [31:16] Min Latency from BC0 to Rol msg
L1_msg_latency[31:0]	0x400A	RW	[15:0] Max Latency from BC0 to L1 msg, default value 0x0028 (1 us) [31:16] Min Latency from BC0 to L1 msg, default value 0x0F8 (6,2 us)
Pre_pulse_counter[15:0]	0x400B	R	Number of decoded pre-pulses.
BCID_Local[11:0]	0x400C	R	Number of bunchcrossings at arrival of L1 trigger.
L0_counter[15:0]	0x400D	R	Number of L0 triggers
L1_counter[15:0]	0x400E	R	Number of L1 triggers
L1_msg_counter[15:0]	0x400F	R	Number of successfully decoded L1 messages
L2a_counter[15:0]	0x4010	R	Number of successfully decoded L2a messages
L2r_counter[15:0]	0x4011	R	Number of successfully decoded L2r messages
Rol_counter[15:0]	0x4012	R	Number of successfully decoded Rol messages
Bunchcounter[11:0]	0x4013	R	Debug: Number of bunchcrossings

Name	Address	Access	Description
hammingErrorCnt[31:0]	0x4016	R	[15:0] Number of single bit hamming errors [31:16]Number of double bit hamming errors
ErrorCnt[31:0]	0x4017	R	[15:0] Number of message decoding errors [31:16]
Duffered events[4:0]	0×4020		Number of errors related to sequence and timeouts. Number of events stored in the FIFO.
Buffered_events[4:0] DAQ Header01[31:0]	0x4020 0x4021	R R	Latest received DAQ Header 1
DAQ_Header02[31:0]	0x4021 0x4022	R	Latest received DAQ Header 1
DAQ_Header03[31:0]	0x4022	R	Latest received DAQ Header 2
DAQ_Header04[31:0]	0x4024	R	Latest received DAQ Header 3
DAQ_Header04[31:0]	0x4024	R	Latest received DAQ Header 5
DAQ_Header06[31:0]	0x4025 0x4026	R	Latest received DAQ Header 5
DAQ_Header07[31:0]	0x4020 0x4027	R	Latest received DAQ Header 7
Event info[17:0]	0x4027 0x4028	R	Latest Received Event information:
	0X4020	ĸ	[0] Rol enabled
			[1] Region of Interest announced (=ESR)
			[2] Rol received
			[3] Within region of interest
			[4:7] Calibration/SW trigger type (= RoC)
			[8] Software trigger event
			[9] Calibration trigger event [10] Event has L2 Reject trigger
			[10] Event has L2 Accept trigger
			[12] Include payload
			[17:13] SCLK phase when (L0/L1)trigger arrives
Event error [24:0]	0x4029	R	[0] Serial B Stop Bit Error
			[1] Single Bit Hamming Error Individually Addr.
			[2] Double Bit Hamming Error Individually Addr.
			[3] Single Bit Hamming Error Broadcast.
			[4] Double Bit Hamming Error Broadcast.
			[5] Unknown Message Address Received
			[6] Incomplete L1 Message [7] Incomplete L2a Message
			[8] Incomplete Rol Message
			[9] TTCrx Address Error (not X"0003")
			[10] Spurious L0
			[11] Missing L0
			[12] Spurious L1
			[13] Boundary L1
			[14] Missing L1
			[15] L1 message arrives outside legal timeslot [16] L1 message missing/timeout
			[17] L2 message arrives outside legal timeslot
			[18] L2 message missing/timeout
			[19] Rol message arrives outside legal timeslot
			[20] Rol message missing/timeout
			[21] Pre pulse error (=0; possible future use)
			[22] L1 message content error
			[23] L2 message content error
			[24] Rol message content error

Table 1.6 Trigger interface module register set

1.4 RCU Memories and Address space

RCU contains a number of memories to execute the block transactions and to perform the event readout. These memories and their description are given in table 1.7

Name	Address	Size	Access	Description
Instruction Memory	0x 0000 – 0x 0FFF	*SPM 22x4K	W/R	Contains instructions to be executed by *IS
Read out List Memory Branch -A	0x 1000– 0x 17FF	SPM 12x2K	W/R	Configured with the channel addresses for event readout
Read out List Memory Branch –B	0x 1800– 0x 1FFF	SPM 12x2K	W/R	
Result Memory	0x 2000 – 0x 37FF	SPM 25x 6K	W/R	It contains result of each transaction by IS
TTCRx Register set	0x 4000 – 0x 4FFF	Register s of various sizes	W/R	These registers are used in TTCRx module
Hit List Memory Branch - A	0x 5000 – 0x 503F	*DPM 32x64		Configured by Board Controllers with list of active channels for all FECs in Branch A
Hit List Memory Branch - B	0x 5040 – 0x 507F	*DPM 32x64	W/R	Configured by Board Controllers with list of active channels for all FECs in Branch B
Data Memories	0x 5800 – 0x 5FFF	DPM 8*(20x2 56)	W/R	Contains the event data, from FECs

Table 1.7 Addressable Memories of RCU

1.5 Instruction Sequencer Commands

There are four internal instructions for the Instruction Sequencer (IS) which controls the execution of instructions from instruction memory. Result of these internal commands is loaded in the result memory as well. In this section detail structure of these commands in the instruction memory and the respective result in the result memory is described.

Instruction Sequencer Loop

Instruction Coding in Instruction Memory

21	20	19 1	6 15	12	11		0
1	1	0001		Number of Loops		Loop Return Address	

Table 1.8 Structure of LOOP instructions.

Description

This command is used as internal instruction of the sequencer to repeat a set of instructions for specific number of times. The iteration is made for the specific number of times till the loop return address. Parametric structure for loop command is shown in table 1.8

Result of "LOOP" in the Result Memory

Result of this instruction is loaded in the result memory. Status bit [20] shows the success or failure of the execution. 0: success; 1: failure. Table 1.9 and 1.10 shows the result of execution for successful or failed execution respectively.

2	24	21	20	19	16	15	12	11		0
	0100		0	Zero	s	Numb Loo			Loop Return Address	

Table 1.9: Content of result memory for successful execution of loop.

_	24	21	20	19	14	13	10 9		0
	0100		1	Zeros		Error l Num		Number of Errors	

Table 1.10: Content of result memory for failed execution of loop.

Instruction Sequencer Wait

Instruction Coding in Instruction Memory

21	20	19	16	15		0
1	1	001	10		Number of wait cycles (40MZ CLK)	

Table 1.11: Structure of WAIT instruction

Description

This command is used as internal instruction of the sequencer to wait for specified number of clock cycles. Parametric structure for WAIT command is shown in table 1.11

Result of "WAIT" in the Result Memory

Result of this instruction is loaded in the result memory. Table 1.12 shows the result of execution.

24	21	20	19	16	5	0
01	01	0		Zeros	Number of wait cycle	es (40MZ CLK)

Table 1.12: Content of result memory for the execution of Wait

End OF Sequence

Instruction Coding in Instruction Memory

 21	20	19 16	15	0
1	1	1000	X	

Table 1.13: Structure of ENDSEQ instruction.

Description

This command is used as internal instruction of the sequencer to end a set of instructions. Parametric structure for ENDSEQ command is shown in table 1.13

Result of "ENDSEQ" in the Result Memory

Result of this instruction is loaded in the result memory along with the address of last instruction executed. Table 1.14 shows the result of execution for ENDSEQ.

2	24	21	20	19	12	11	0
	0111		0		Zeros	Address of last executed instruction	

Table 1.14: Content of result memory for ENDSEQ.

Instruction Sequencer End of memory

Instruction Coding in Instruction Memory

21	20	19	16	15		0
1	1	111	1		X	

Table 1.15 Structure of ENDMEM instruction.

Description

This command is used to declare that end of memory has reached. Parametric structure for ENDMEM command is shown in table 1.15

Result of "ENDMEM" in the Result Memory

Result of this instruction is loaded in the result memory along with the address of last instruction executed. Table 1.16 shows the result of execution for ENDMEM.

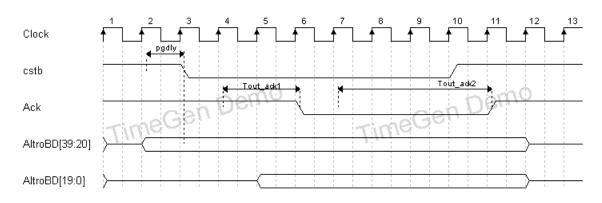
24	4 2	21	20	19	12 11		0
	0111		0	Zeros		Address of last executed instruction	

Table 1.16 Content of result memory for ENDSEQ.

1.6 Front End Card Instructions

There are three instructions which can be executed through the instruction sequencer. These instructions are to perform three different functions in FECs, read, write or command. Results of these instructions are loaded in the result memory regardless of successful or failed execution. In this section detail structure of these instructions for the instruction memory and the respective result in the result memory is described.

Front End Card Read Instruction


Instruction Coding in Instruction Memory

21	20	19	0
0	0	Altro Instruction Format	

Table 1.17: Structure of FEC_RD instruction.

Description

This instruction is used to perform the read operation on FEC. Any addressable location of ALTRO or Board controller can be read using this instruction through instruction sequencer. Parametric structure for FEC_RD instruction is shown in table 1.17

Timing Parameters

Figure 1.2 FEC- read chronogram.

Pgdly = The command strobe is asserted after this programmable delay with respect to the ALTRO bus.

Tout_ack1 = This is the maximum time for which acknowledge from FEC is awaited to get asserted, 40 readout clock cycles.

Tout_ack2 = This is the maximum time for which acknowledge from FEC is awaited to get released, 40 readout clock cycles.

Result of "FEC_RD" in the Result Memory

Result of this instruction is loaded in the result memory. Result of each read instruction comprises of two locations of the result memory. Status bit [20] shows the success or failure of the execution. 0: success; 1: failure. Table 1.18 ad 1.19 shows the result of execution for successful or failed execution respectively.

24	21	20	19		0
00	0000	0		FEC Address from instruction memory for current instruction	
00	00	0		Data Read from FEC	

Table 1.18: Content of result memory for successful execution of FEC_RD.

24 21	20	19	0
0000	1	FEC Address from instruction memory for current instruction	
0000		"0000000"; AIM Error Code [10:6] ; Instr error code [5 :0]	

AIM Error Code [10:6]	Description
01001	Altro Error line is asserted before "cstb" is asserted from RCU
01010	Altro Error line is asserted before the "ack" from FEC
01011	Altro asserts the "ack" before "cstb" " is asserted from RCU
01100	Altro asserts error while RCU wait for "ack"
01101	Altro does not assert "ack" time out 1 occurs.
01110	Altro error is asserted while waiting the release of "ack"
01111	ALTRO doesn't release the "ack" time out 2 occurs.

Table 1.19: Content of result memory for failed execution of FEC_RD.

Table 1.20: Description f the AIM error code in the result memory for read transaction.

Bit Number	Instr error code [5:0] Description
0	This bit is set if there has been an error in loop instruction
1	This error bit is set if the format of instruction sequencer command is not correct.
2	This bit is set if the format of instruction to board controller is not correct.
3	This bit is set if the board controller at "Off FEC" is addressed, checked w.r.t. FEC_ACTIVE LIST
4	This bit is set if the format of instruction to ALTRO is not correct.
5	This bit is set if ALTRO at "Off FEC" is addressed, checked w.r.t. FEC_ACTIVE LIST

Table 1.21: Description of the instruction Analyzer error code in the result memory for read transaction.

Front End Card Write Instruction

Instruction Coding in Instruction Memory

21	20	19	0
4	0	Altro Instruction Format	
1		Data to be written to FEC	

Table 1.22: Structure of FEC_WR instruction.

Description

This instruction is used to perform the write operation on FEC. Any write able location of ALTRO or Board controller can be written using this instruction through instruction sequencer. Each write instruction consists of two locations, first one contains the instruction parameters same as ALTRO, next subsequent location contains the data for the write transaction. Parametric structure for FEC_WR instruction is shown in table 1.22

Timing Parameters

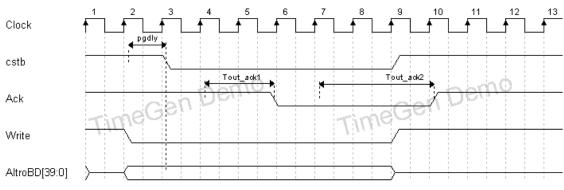


Figure 1.3 FEC- write Chronogram.

Pgdly = The command strobe is asserted after this programmable delay with respect to the ALTRO bus.

Tout_ack1 = this is the maximum time for which acknowledge from FEC is awaited to get asserted, 40 readout clock cycles.

Tout_ack2 = This is the maximum time for which acknowledge from FEC is awaited to get released, 40 readout clock cycles.

Result of "FEC_WR" in the Result Memory

Result of this instruction is loaded in the result memory. Result of each write instruction comprises of two locations of the result memory. Status bit [20] shows the success or failure of the execution. '0': success; '1': failure. Table 1.23 ad 1.24 shows the result of execution for successful or failed execution respectively.

24 21	20	19		0
0040	0		FEC Address from instruction memory for current instruction	
0010			Data written to FEC from Instruction memory	

24 21	20	19		0
0010	1		FEC Address from instruction memory for current instruction	
			"0000000" ; AIM Error Code[10:6] ; Instr Anlz. Code [5 :0]	

Table 1.23: Content of result memory for successful execution of FEC_WR.

Table 1.24: Content of result memory for failed execution of FEC_WR.

AIM Error Code [10:6]	Description
00001	Altro Error line is asserted before "cstb" is asserted from RCU
00010	Altro "ack" is asserted before the "cstb" from RCU
00011	Altro asserts error while RCU wait for "ack"
00100	Altro does not assert "ack" time out 1 occurs.
00101	Altro error is asserted while waiting the release of "ack"
00110	ALTRO doesn't release the "ack" time out 2 occurs.
00111	ALTRO asserts the error line while broadcast write is being executed.

Table 1.25: Description of the error code in the result memory for write transaction.

Bit Number	Instr error code [5:0] Description
0	This bit is set if there has been an error in loop instruction
1	This error bit is set if the format of instruction sequencer command is not correct.
2	This bit is set if the format of instruction to board controller is not correct.
3	This bit is set if the board controller at "Off FEC" is addressed, checked w.r.t. FEC_ACTIVE LIST
4	This bit is set if the format of instruction to ALTRO is not correct.
5	This bit is set if ALTRO at "Off FEC" is addressed, checked w.r.t. FEC_ACTIVE LIST

Table 1.26: Description of error codes in the result memory for write transaction.

Front End Card Command Instruction

Instruction Coding in Instruction Memory

21	20	19	0
0	1	Altro Instruction Format	

Table 1.27: Structure of FEC_CMD instruction.

Description

This instruction is used to execute FEC command operation. Parametric structure for FEC_CMD instruction is shown in table 1.27.

Timing Parameters

The timing behaviour for this instruction is same as the FEC write instruction. There is one exception for the "EVLRDO" command which is issued while making the sparse readout. The exception is related to acknowledge signal "ACK" from FEC. For this command ACK is not checked for its assertion.

Result of "FEC_CMD" in the Result Memory

Result of this instruction is loaded in the result memory. Result of each command instruction comprises of two locations of the result memory. Status bit [20] shows the success or failure of the execution. 0: success; 1: failure. Table 1.28 and 1.29 shows the result of execution for successful or failed execution respectively.

24	2′	1	20	19 0		
0001 0		•	FEC Address from instruction memory for current instruction			
U	001	1 0		001		XXXXXX

Table 1.28: Content of result memory for successful execution of FEC_CMD.

24	21	20	19 0
0001 1		4	FEC Address from instruction memory for current instruction
0	501	1 "0000000" ; **AIM Error Code [10:6] ; * Instr Anlz. Code	

Table 1.29: Content of result memory for failed execution of FEC_CMD.

Explanation of the error codes is same as the FEC – write transaction please refer to table 1.25 and table 1.26.

1.7 RCU Commands

There are eleven commands which can be executed directly on RCU means that its not loaded in the instruction sequencer. These commands are to initialize different functions in RCU. Results of these instructions are not available in the result memory In this section detail structure of these commands is described. Please not that the instruction for the resets is different for DDL and DCS side.

Name	Access	Inst. Code	Description
GRESET	W	0x 5300	Global reset. Resets RCU and FECs
GRESET	vv	0x2*	*Value for DDL send command
FECRST	W	0x 5301	Front end card reset
FECKST	vv	0x8	*Value for DDL send command
RCURST	W	0x 5302	RCU Reset
RCORST	vv	0x4	*Value for DDL send command
CONFGFEC	W	0x 5303	Re-configures the BC of the FEC.
EXESEQ	W	0x 5304	Start Execution of Instruction Sequencer
ABRTSEQ	W	0x 5305	Abort the Execution cycle of Instruction Sequencer
SWTTRG	W	0x 5306	Issue Software Trigger
CLERRSTREG	W	0x 5307	Clear Error & Status Registers
CLERRSTREG	vv	0x10000	*Value for DDL send command
CLEARRDRXREG	W	0x 5308	Clear RD_RX error register
CLRCNT	W	0x 5309	Clear Counters
ARBITERIRQ	W	0x 5310	DCS BUS INTERRUPT REQUEST
			Note: In DCS interface
ARM_SYNCH	W	0x 530A	Arm Synchronization with L0 of SOD

Table 1.30: RCU Commands

Global Reset

Instruction Code	0x5300
Access Type	Command

Description

This command will reset the full RCU, including configuration registers, error and status registers and front end cards. The code 0x5300 is specific to be used from DCS only. The coding of this command from DDL is different. DDL send command function is used to issue this command and value passed to the function must be (0x2)

FEC Reset

Instruction Code	0x5301	
Access Type	Command	

Description

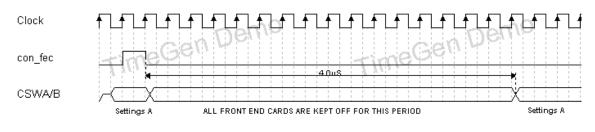
This command is used to send a reset pulse to Front end cards. The coding of this command from DDL is different. DDL send command function is used to issue this command and value passed to the function must be (0x8)

RCU Reset

Instruction Code	0x5302
Access Type	Command

Description

This command will reset the RCU for state machines. Configuration registers, error and status registers will not have any effect from this command. The code 0x5302 is specific to be used from DCS only. The coding of this command from DDL is different. DDL send command function is used to issue this command and value passed to the function must be (0x4)


Configuration of Front End Card (Board Controller)

Instruction Code	0x5303	
Access Type	Command	

Description

This command will turn off the front end cards for 4.0uSec. After the 4.0uSec the front end cards will be turned on same as the original configuration of active front end card list as shown in the figure

Timing Parameters

Execute Sequence (Start Sequencer)

Instruction Code	0x5304
Access Type	Command

Description

This command will start the execution of Instruction sequencer. Instruction sequencer will execute the sequence loaded in the instruction memory.

Abort Sequence (Stop Sequencer)

Instruction Code	0x5305
Access Type	Command

Description

This command will abort the execution of current sequence which is being executed by the sequencer. Instruction sequencer will exit from the sequence loaded in the instruction memory to idle state.

Software Trigger

Instruction Code	0x5306
Access Type	Command

Description

This command will issue sequence of L1a and L2a to front end cards. The latency between L1 and L2 is programmable through the Altro interface configuration register (ALTROIF).

Timing Parameters

Latency between L1 and L2 is programmable with Altro interface register. Total of 13 bits can be assigned to set this latency. L1 is synchronized with respect to sampling clock asserted for two clock cycle. Similar way L2 to FEC is synchronized with read out clock as shown in figure 1.4

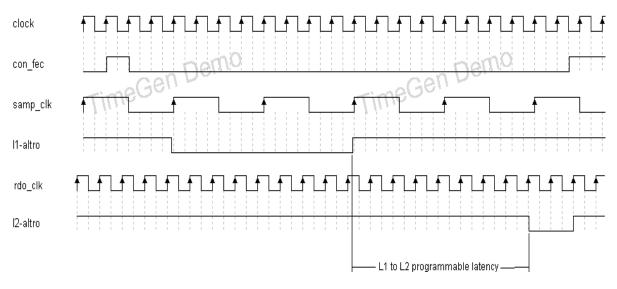


Figure 1.5 software trigger chronogram.

Clear Error and Status Registers

Instruction Code	0x5307	
Access Type	Command	

Description

This command clears all the error status registers. The coding of this command from DDL is different. DDL send command function is used to issue this command and value passed to the function must be (0x10000)

Clear Error and Status Registers

Instruction Code	0x5309
Access Type	Command

Description

This command clears all the counters in the RCU.

Arm Synchronization of Sampling Clock

Instruction Code	0x530A
Access Type	Command

Description

This command will set the RCU for Synchronization with L0 of SOD. Sampling Clock is reset upon receiving the first L0 after this command has been received.

RCU Data Format

In the RCU, the 40-bit wide ALTRO data packets are formatted into 32-bit wide packet. Structure of event data is described in table 1.26 The 32-bit data packet is completed by a trailer (table 1.1) to form the RCU data block. The trailer consists of 2 fixed words, the first and the last one in the trailer, and N optional words that carry information on the settings and status of the FECs and RCU.

The two fixed trailer words define respectively: 1) the Payload Length, which specifies the number of 40-bit data words; 2) the RCU Address and the Trailer Length in 32-bit words.

The optional words that compose the trailer consist of a parameter *code* (the 6 MSB), and the parameter itself that consists of 26 bits. The parameters to be appended to the Event Trailer will be stored in a dedicated RCU memory (Trailer Memory) that contains a maximum of 64 words. The actual number of parameter that will be included in the Trailer is variable and is defined by the first word in the Trailer Memory. Hereunder, detail of each parameter is described in table 1.32, that will be included in the RCU Firmware V2.0).

Common Data Header (8 words)	
Payload (Variable nr. of words, minimum 0)	
RCU Trailer (9 words)	

Table 1.31 Structure of the Event data block

2.1 Common Data Header (CDH)

The various fields of the common data format header are either loaded using the data transmitted by the ALICE Trigger system or created locally by the RCU when running without the ALICE Trigger system (e.g. for standalone tests). The parameters which are set at the RCU level are described here.

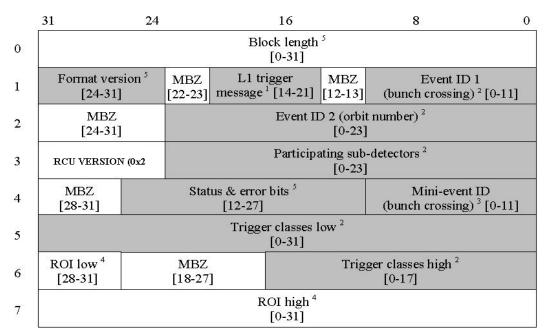


Table 2.1 Common Data Header

Block Length parameter in CDH 0 is set to "FFFFFFF"

RCU Version is set in CDH3 [31:24] set to "0X2"

In CHD4 status & Error bits are set by RCU. RCU receives total of 25 bits of errors from trigger receiver module and code them into these 15 bits. These errors are described in table 2.2.

Error Bit No	Name	Explanation
0	Spurious L0	High if a L0 trigger comes outside of the legal time window for a L0.
1	Missing L0	High if the L0 trigger is missing
2	0	Data parity error: Not handled in RCU set to '0'
3	0	Control parity error : Not handled in RCU set to '0'
4	Incomplete L1 Message	High when less than 4 L1 data words follows a L1 header
	Incomplete L2a Message	High when less than 7 L2a data words follows a L2a header
	Incomplete Rol Message	High when less than 3 Rol data words follows a Rol header
	L1 message missing/timeout	High if the L1 message does not start to arrive within the legal time window for a L1 message.
	L2 message arrives outside legal timeslot	High if all or part of the L2a/L2r message arrives outside of the legal time window for a L2a/L2r message.
	RoI message missing/timeout	High if the RoI message does not start to arrive within the legal time window for a RoI message.
5	0	Front-end electronics error Not Handled in RCU set to '0'
6	0	HLT decision flag : Not Handled in RCU set to '0'
7	0	HLT payload flag: Not Handled in RCU set to '0'
8	0	DDG payload flag: Not Handled in RCU set to '0'
9	TTCrx Address Error	High if the TTCrx address is unequal to 0x8001. The message will not be decoded if this is this case and the message decoder will return to idle.
10	L2 message arrives outside legal timeslot	High if all or part of the L2a/L2r message arrives outside of the legal time window for a L2a/L2r message.
	L2 message	High if the L2a/L2r message does not start to arrive within the
11	missing/timeout Prepulse error	legal time window for a L2a/L2r message Not Used.
11	Serial B Stop Bit	Serial B stop bit is 0 when it is expected to be 1
	Error	· · ·
	SingleBit Hamming Error Individually Addr	Single bit hamming error found and corrected in individually addressed message.
	Double Bit Hamming Error Individually Addr	Double bit hamming error found in individually addressed message, not possible to correct. Most likely a lot of other errors will come as a result of this.
	Double Bit Hamming Error Broadcast	Double bit hamming error found in broadcast message, not possible to correct. Most likely a lot of other errors will come as a result of this.
	Unknown Message Address Received	If an individually addressed message has arrived with a not known address. Known addresses are given in Table 5-7.
	TTCrx Address Error	High if the TTCrx address is unequal to 0x8001. The message will not be decoded if this is this case and the message decoder will return to idle.
	L1 message arrives outside legal timeslot	High if all or part of the L1 message arrives outside of the legal time window for a L1 message.
	L2 message arrives outside legal timeslot	High if all or part of the L2a/L2r message arrives outside of the legal time window for a L2a/L2r message.
	Rol message	High if all or part of the RoI message arrives outside of the legal

	arrives outside legal timeslot	time window for a RoI message.
	Rol message missing/timeout	High if the RoI message does not start to arrive within the legal time window for a RoI message.
	L1 message content error	High if a combination of the following occur: CIT_L1 = 0 after arrival of pre-pulse L1_SwC = 0 when CIT_L1 = 1 L1_SwC /= L2_SwC CIT_L1 /= CIT_L2a ESR_L1 /= ESR_L2a
	L2 message content error	High if a combination of the following occur: BCID_L2a/L2r > 3563 CIT_L2 = 0 after arrival of pre-pulse L2_SwC = 0 when CIT_L2 = 1 L1_SwC /= L2_SwC CIT_L1 /= CIT_L2a ESR_L1 /= ESR_L2a
	Rol message content error	High if a combination of the following occur: BCID_Rol > 3563
13	Missing L1	High if the L1 trigger is missing
14	0	Multi-event buffer error: Not Handled in RCU set to '0'
15	0	Reserved (Not used) '0'

Table 2.2 Error & Status Bit in CDH 4 [27:12]

2.2 Pay Loac

ALTRO data is s words. The data is sent Order of 10 bit words in 32

31 30	29	20	19 10	9 0
01	Е	Altr	Altro channel header	
00	D	W9	DW8	DW7
00	D	W6	DW5	DW4
00	D	W3	DW2	DW1
00	D	W0	0x00	0x00
01	Е	Altr	o channel	header 2
00	D	W4	DW3	DW2
00	D	W1	DW2	0x00
01	Е	Altr	o channel	header 3
00	D	W3	DW2	DW1

Table 2.3 Order of 10 bit words in 32 bit data packet

Altro channel header [11:0]: [Channel Address from Altro]

Altro channel header [25:16]: [Block Length Number of 10 bit words from Altro]

Altro channel header [29]: E: Channel Error Bit, it is set to "1" if there has been a mismatch for channel address or block length received from ALTRO trailer. RCU will add a corrected Altro channel header followed by the data received from corresponding channel.

Altro channel header [31:30]: Word ID = "01" to mark ALTRAO Header : "00" for payload

Altro channel header [15:12] – [28:26]: Reserved = "0000"

DW: 10 bit data word.

0x00: Padding

2.3 RCU Trailer

Event data is followed by RCU trailer. This trailer comprises of 9 words of 32 bits. Start and end of RCU trailer is marked by two most significant bits. Each trailer word consists of parameter code and its value. RCU trailer format is shown in table 2.4. detail of each parameter is described as followed.

31 30	0 29	26	25		0
Word ID	Parameter			Value	
10	Pay Load Length	0000		Number of 32 bit words	
10	Error Register 1	0001	E	rror Registers for Branch A and B	
10	Error Register 2	0010		Read out Errors	
10	Error Register 3	0011		Number of Altro Trailer Errors	
10	Act FEC A	0100	Ac	tive Front End Cards for Branch A	
10	Act FEC B	0101	Ac	tive Front End Cards for Branch B	
10	RDO CONFIG 1	0110	Rea	dout configuration Register1 of Altro	
10	RDO CONFIG 2	0111	Rea	dout configuration Register2 of Altro	
11	RCU ID	1000	RCU FW version	RCU address	

Table 2.4 RCU Trailer

[31:30]: Word ID: two most significant bits are used to identify the start and end of RCU trailer. Word ID= "10" shows that the word belong to RCU Trailer where as "11" shows that this is the last word of the RCU trailer.

[29:26]: Parameter: four bits field is used to mark different words in the RCU trailer

[25:0]: Value: These 26 bits are used to record the status of the parameters listed in the table for the event.

Pay Load length

Number of 32 bit words transmitted from RCU

Word ID	Parameter Code	Value
10	0000	Number of 32 bit words

Description

This trailer words contains the number of data words sent from RCU to SIU. It's the first word in trailer and the parameter code is 0x0. The Word ID is two most significant bits set to "10" showing that the word is part of RCU trailer.

Error Register 1

Error Register from Branch A and Branch B

Word ID	Parameter Code	Value
10	0001	Error Registers for Branch A and B

Description

This trailer words contains information about errors occurred during normal read / write / command operation on FEC for branch A and branch B. Mapping of these bit with respect to branches is described below.

Error Register1 [25:13] = FECERRA[19:7]; Error Register1[12:0] = FECERRB[19:7];

FECERRA and FECERRB are two status registers, copy of these registers are mapped in this trailer word. List of the errors in FEC ERRA and FEC ERRB and respective bits are given as under.

FECERR[18]: ALTRO error signal asserted while data being transferred;

FECERR[17]:transfer not asserted;

FECERR[16]: ALTRO error asserted before transfer;

FECERR[15]: Write FSM error when started by RDO FSM;

FECERR[14]: ackn not released by ALTRO;

FECERR[13]: ALTRO error asserted while waiting for ackn to be released;

FECERR[12]: ALTRO does not assert ackn;

FECERR[11]: ALTRO error asserted while waiting for ackn;

FECERR[10]: ALTRO asserts ackn before assertion of cstb;

FECERR[09]: ALTRO error asserted while waiting for ackn in state "chkack";

FECERR[08]: ALTRO error asserted in state "assertbus"

FECERR[07]: ALTRO error asserted in the execution of a broadcast command

Error Register 2

Readout Errors

Word ID	Parameter Code	Value
10	0010	Read out Error Register

Description

This trailer words contains the errors occurred during readout process. Bit number 7 and 8 shows that there has been at least one channel address or block length mismatch in the event data. SCANEVENLEN error and EVLENRDO errors are related to the errors occurred during sparse readout.

ERR_REG2[8] :Block Length mismatchERR_REG2[7]:Channel Address mismatch;ERR_REG2[6]:RDYRX error;ERR_REG2[5]:SCANEVLEN error;ERR_REG2[4:0]:EVLENRDO error;

Error Register 3

Number of Altro Trailers Errors

Word ID	Parameter Code	Value
10	0011	Count address & block length mismatch

Description

This trailer words contains the number of channel address and block length mismatches found in the trailers sent from Altro. Channel address mismatch is incremented when the last channel addressed is different than the channel address in Altro trailer. block length mismatch is marked by comparing the number of data strobes and number of 10 bit words in the Altro trailer.

ERR_REG3 [11:0] = Number of mismatches in the channels address detected by the data assembler during the readout

ERR_REG3[24:12] = Number of mismatches in the channel data block length detected by the data assembler during the readout

Active Front End Card List for Branch A

Word ID	Parameter Code	Value
10	0100	Active Front End Cards on Branch A

Description

This trailer words contains the of Active Front End Cards(FECs) in branch A. This information is copied same as configured during RCU configuration for readout. The Word ID is two most significant bits set to "10" showing that the word is part of RCU trailer.

Act FEC B

Active Front End Card List for Branch B

Word ID	Parameter Code	Value
10	0101	Active Front End Cards on Branch B

Description

This trailer words contains the list of Active Front End Cards (FECs) in branch B. This information is copied same as configured during RCU configuration for readout. The Word ID is two most significant bits set to "10" showing that the word is part of RCU trailer where as the parameter code is 0101.

RDO CONFIG 1

Read out Configuration 1(Copy of ALTRO Register DPCFG 1)

Word ID	Parameter Code	Value
10	0110	Copy of ALTRO Register Data Path Configuration 1

Description

This trailer words is copy of Altro Register DPCFG 1 for TPC application for details please see ALTRO manual page 36, 37. This register can be written as ALTROCFG1 at 0x5104. This register can be configured for any detector related information please consult page 13 of this manual.

RDO CONFIG 2

Read out Configuration 2 (Copy of ALTRO Register DPCFG 2)

Word ID	Parameter Code	Value
10	0111	Copy of ALTRO Register Data Path Configuration 2

Description

This trailer words is copy of Altro Register DPCFG 2 for TPC application for details please see ALTRO manual page 36, 37. This register can be written as ALTROCFG2 at 0x5105. This register can be configured for any detector related information please consult page 14 of this manual.

[4:0] Phase of sampling clock with respect to Arrival of the trigger

RCU Identification Register

Word ID	Parameter Code	Value
11	1000	RCU Identification

Description

This trailer words contains the parameters related to the RCU in terms of its location. This parameter contains the firmware version as well. Details of the this parameter is given as under:-

[25:16] = 0x2 RCU Firmware Version;

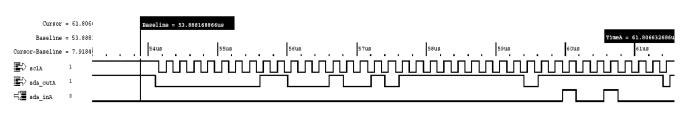
[15:7] = RCU Address

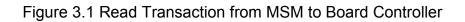
RCU Address [8] = 0 for A-side, 1 for C-side

RCU Address [7:3] = sector number (0:17)

RCU Address [2:0] = readout partition number (0:5)

[6:0] = Trailer length (no. of 32-bit words related to trailer words)


Monitoring Unit (SLOW Control)


Monitoring unit can read all of the status registers available in board controller. Read process is done in three steps:-

- i) Write address in the SC Address Register (0x8005)
- ii) Give Execute Command 0x8010
- iii) Read the result Register 0x8002

RD TX from MSM to Baord Controller

7.5 usec for one complete Transaction

Page

Appendix

Instruction Memory (IM)

Instruction memory is used to perform read/write/command transaction to ALTRO or board controller. Configuration of ALTROs is performed by execution of the sequence written in the instruction memory.

ADDRESS	CONTENT	COMMENT WRITE ALTRO REGISTER A BRANCH A, FEC 0 ,
0x000	0x20000A	CHANNEL 0
0x001	0x000ABC	DATA TO WRITE:ABC ADDRESS TO
0X002	0x00000A	READ END OF
0x003	0X380000	SEQUENCE

Readout List Memory (ROLM)

Readout list memory is configured with channel addresses for event readout.